Andrey Kuznetsov and Career Highs of ATP Non-Semifinalists

When following this week’s ATP 250 tournament in Winston-Salem and seeing Andrey Kuznetsov in the quarterfinals the following question arose: Will he finally make it into the first ATP semifinal of his career? As shown here Andrey – with a ranking of 42 – is currently (by far) the best-ranked player who has not reached an ATP SF. And it looks as if he will stay on top of this list for some time longer after losing to Pablo Carreno Busta 4-6 3-6 on Wednesday.

With stats of 0-10 in ATP quarterfinals, he is still pretty far away from Teymuraz Gabashvili‘s streak of 0-16. Despite having lost six more quarterfinals before winning his first QF this January against a retiring Bernard Tomic, Teymuraz climbed only to a ranking of 50. Still, we could argue that the QF losing-streak of Teymuraz is not really over after having won against a possibly injured player.

Running the numbers can answer questions such as “Who could climb up highest in the rankings without having won an ATP quarterfinal?” Doing so will put Andrey’s number 42 into perspective and will possibly reveal some other statistical trivia.

Player                Rank            Date   On
Andrei Chesnokov        30      1986.11.03    1
Yen Hsun Lu             33      2010.11.01    1
Nick Kyrgios            34      2015.04.06    1
Adrian Voinea           36      1996.04.15    1
Paul Haarhuis           36      1990.07.09    1
Jaime Yzaga             40      1986.03.03    1
Antonio Zugarelli       41      1973.08.23    1
Bernard Tomic           41      2011.11.07    1
Omar Camporese          41      1989.10.09    1
Wayne Ferreira          41      1991.12.02    1
Andrey Kuznetsov        42      2016.08.22    0
David Goffin            42      2012.10.29    1
Mischa Zverev           45      2009.06.08    1
Alexandr Dolgopolov     46      2010.06.07    1
Andrew Sznajder         46      1989.09.25    1
Lukas Rosol             46      2013.04.08    1
Ulf Stenlund            46      1986.07.07    1
Dominic Thiem           47      2014.07.21    1
Janko Tipsarevic        47      2007.07.16    1
Paul Annacone           47      1985.04.08    1
Renzo Furlan            47      1991.06.17    1
Mike Fishbach           47      1978.01.16    0
Oscar Hernandez         48      2007.10.08    1
Ronald Agenor           48      1985.11.25    1
Gary Donnelly           48      1986.11.10    0
Francisco Gonzalez      49      1978.07.12    1
Paolo Lorenzi           49      2013.03.04    1
Boris Becker            50      1985.05.06    1
Brett Steven            50      1993.02.15    1
Dominik Hrbaty          50      1997.05.19    1
Mike Leach              50      1985.02.18    1
Patrik Kuhnen           50      1988.08.01    1
Teymuraz Gabashvili     50      2015.07.20    1
Blaine Willenborg       50      1984.09.10    0

The table shows career highs (up until #50) for players before they won their first ATP QF. A 0 in the last column indicates that the player can still climb up in this table, because he did not win a QF, yet. There may also be retired players being denoted with a 0, because they never managed to get past a QF during their career.

I wonder, who had Andrei Chesnokov on the radar for this? Before winning his first ATP QF he pushed his ranking as far as 30. He later went on to have a career high of 9. Nick Kyrgios could also improve his ranking quickly without the need to go as deep as a SF. His Wimbledon 2014 QF, Roland Garros 2015 R32, and Australian Open 2015 QF runs helped him to get up until #34 without a single win at an ATP QF. Also, I particularly would like to highlight Alexandr Dolgopolov who reached #46 before having even played a single QF.

Looking only at players who are still active and able to up their ranking without an ATP SF we get the following picture:

Player                 Rank            Date
Andrey Kuznetsov         42      2016.08.22
Rui Machado              59      2011.10.03
Tatsuma Ito              60      2012.10.22
Matthew Ebden            61      2012.10.01
Kenny De Schepper        62      2014.04.07
Pere Riba                65      2011.05.16
Tim Smyczek              68      2015.04.06
Blaz Kavcic              68      2012.08.06
Alejandro Gonzalez       70      2014.06.09

Andrey seems to be relatively alone with Rui Machado being second in the list having reached his highest ranking already about five years ago. Skimming through the remainder of the table, we would be surprised if anyone soon would be able to come close to Andrey’s 42, which doesn’t mean that a sudden unexpected streak of an upcoming player would render this scenario impossible.

So what practical implications does this give us for analyzing tennis? Hardly any, I am afraid. Still, we can infer that it is possible to get well within the top-50 without winning more than two matches at a single tournament over a duration that can even range over a player’s whole career. Of course it would be interesting to see how long such players can stay in these ranking areas, guaranteeing direct acceptance into ATP tournaments and, hence, a more or less regular income from R32, R16, and QF prize money. Moreover, as the case of 2015-ish Nick Kyrgios shows, the question arises how one’s ranking points are composed: Performing well at the big stage of Masters or Grand Slams can be enough for a decent ranking while showing poor performance at ATP 250s. On the other hand, are there players whose ATP points breakdown reveals that they are willing to go for easier points at ATP 250s while never having deep runs at Masters or Grand Slams? These are questions which I would like to answer in a future post.

Peter Wetz is a computer scientist interested in racket sports and data analytics based in Vienna, Austria. I would like to thank Jeff for being open-minded and allowing me to post these surface-scratching lines here.

Searching For Meaning in Distance Run Stats

For the last couple of years, some tennis broadcasts have featured “distance run” stats, tracking how far each player travels over the course of a point or a match. It’s a natural byproduct of all the cameras pointed at tennis courts. Especially in long rallies, it’s something that fans have wondered about for years.

As is often the case with new metrics, no one seems to be asking whether these new stats mean anything. Thanks to IBM (you never thought I’d write that, did you?), we have more than merely anecdotal data to play with, and we can start to answer that question.

At Roland Garros and Wimbledon this year, distance run during each point was tracked for players on several main courts. From those two Slams, we have point-by-point distance numbers for 103 of the 254 men’s singles matches. A substantial group of women’s matches is available as well, and I’ll look at those in a future post.

Let’s start by getting a feel for the range of these numbers. Of the available non-retirement matches, the shortest distance run was in Rafael Nadal’s first-round match in Paris against Sam Groth. Nadal ran 960 meters against Groth’s 923–the only match in the dataset with a total distance run under two kilometers.

At the other extreme, Novak Djokovic ran 4.3 km in his fourth-round Roland Garros match against Roberto Bautista Agut, who himself tallied a whopping 4.6 km. Novak’s French Open final against Andy Murray is also near the top of the list. The two players totaled 6.7 km, with Djokovic’s 3.4 km edging out Murray’s 3.3 km. Murray is a familiar face in these marathon matches, figuring in four of the top ten. (Thanks to his recent success, he’s also wildly overepresented in our sample, appearing 14 times.)

Between these extremes, the average match features a combined 4.4 km of running, or just over 20 meters per point. If we limit our view to points of five shots or longer (a very approximate way of separating rallies from points in which the serve largely determines the outcome), the average distance per point is 42 meters.

Naturally, on the Paris clay, points are longer and players do more running. In the average Roland Garros match, the competitors combined for 4.8 km per match, compared to 4.1 km at Wimbledon. (The dataset consists of about twice as many Wimbledon matches, so the overall numbers are skewed in that direction.) Measured by the point, that’s 47 meters per point on clay and 37 meters per point on grass.

Not a key to the match

All that running may be necessary, but covering more distance than your opponent doesn’t seem to have anything to do with winning the match. Of the 104 matches, almost exactly half (53) were won by the player who ran farther.

It’s possible that running more or less is a benefit for certain players. Surprisingly, Murray ran less than his opponent in 10 of his 14 matches, including his French Open contests against Ivo Karlovic and John Isner. (Big servers, immobile as they tend to be, may induce even less running in their opponents, since so many of their shots are all-or-nothing. On the other hand, Murray outran another big server, Nick Kyrgios, at Wimbledon.)

We think of physical players like Murray and Djokovic as the ones covering the entire court, and by doing so, they simultaneously force their opponents to do the same–or more. In Novak’s ten Roland Garros and Wimbledon matches, he ran farther than his opponent only twice–in the Paris final against Murray, and in the second round of Wimbledon against Adrian Mannarino. In general, running fewer meters doesn’t appear to be a leading indicator of victory, but for certain players in the Murray-Djokovic mold, it may be.

In the same vein, combined distance run may turn out to be a worthwhile metric. For men who earn their money in long, physical rallies, total distance run could serve as a proxy for their success in forcing a certain kind of match.

It’s also possible that aggregate numbers will never be more than curiosities. In the average match, there was only a 125 meter difference between the distances covered by the two players. In percentage terms, that means one player outran the other by only 5.5%. And as we’ll see in a moment, a difference of that magnitude could happen simply because one player racked up more points on serve.

Point-level characteristics

In the majority of points, the returner does a lot more running than the server does. The server usually forces his opponent to start running first, and in today’s men’s game, the server rarely needs to scramble too much to hit his next shot.

On average, the returner must run just over 10% further. When the first serve is put in play, that difference jumps to 12%. On second-serve points, it drops to 7%.

By extension, we would expect that the player who runs further would, more often than not, lose the point. That’s not because running more is necessarily bad, but because of the inherent server’s advantage, which has the side effect of showing up in the distance run stats as well. That hypothesis turns out to be correct: The player who runs farther in a single point loses the point 56% of the time.

When we narrow our view to only those points with five shots or more, we see that running more is still associated with losing. In these longer rallies, the player who covered more distance loses 58% of the points.

Some of the “extra” running in shorter points can be attributed to returning serve–and thus, we can assume that players are losing points because of the disadvantage of returning, not necessarily because they ran so much. But even in very long rallies of 10 shots or more, the player who runs farther is more likely to lose the point. Even at the level of a single point, my suggestion above, that physical players succeed by forcing opponents to work even harder than they do, seems valid.

With barely 100 matches of data–and a somewhat biased sample, no less–there are only so many conclusions we can draw about distance run stats. Two Grand Slams worth of show court matches is just enough to give us a general context for understanding these numbers and to hint at some interesting findings about the best players. Let’s hope that IBM continues to collect these stats, and that the ATP and WTA follow suit.

Shot-by-Shot Stats for 261 Grand Slam Finals (and More?)

One of my favorite subsets of the Match Charting Project is the ongoing effort–in huge part thanks to Edo–to chart all Grand Slam finals, men’s and women’s, back to 1980. We’re getting really close, with a total of 261 Slam finals charted, including:

  • every men’s Wimbledon and US Open final all the way back to 1980;
  • every men’s Slam final since 1989 Wimbledon;
  • every women’s Slam final back to 2001, with a single exception.

The Match Charting Project gathers and standardizes data that, for many of these matches, simply didn’t exist before. These recaps give us shot-by-shot breakdowns of historically important matches, allowing us to quantify how the game has changed–at least at the very highest level–over the last 35 years. A couple of months ago, I did one small project using this data to approximate surface speed changes–that’s just the tip of the iceberg in terms of what you can do with this data. (The dataset is also publicly available, so have fun!)

We’ve got about 30 Slam finals left to chart, and you might be able to help. As always, we are actively looking for new contributors to the project to chart matches (here’s how to get started, and why you should, and you don’t have to chart Slam finals!), but right now, I have a different request.

We’ve scoured the internet, from YouTube to Youku to torrent trackers, to find video for all of these matches. While I don’t expect any of you to have the 1980 Teacher-Warwick Australian Open final sitting around on your hard drive, I’ve got higher hopes for some of the more recent matches we’re missing.

If you have full (or nearly full) video for any of these matches, or you know of a (preferably free) source where we can find them, please–please, please!–drop me a line. Once we have the video, Edo or I will do the rest, and the project will become even more valuable.

There are several more finals from the 1980s that we’re still looking for. Here’s the complete list.

Thanks for your help!

Measuring the Clutchness of Everything

Matches are often won or lost by a player’s performance on “big points.” With a few clutch aces or un-clutch errors, it’s easy to gain a reputation as a mental giant or a choker.

Aside from the traditional break point stats, which have plenty of limitations, we don’t have a good way to measure clutch performance in tennis. There’s a lot more to this issue than counting break points won and lost, and it turns out that a lot of the work necessary to quantify clutchness is already done.

I’ve written many times about win probability in tennis. At any given point score, we can calculate the likelihood that each player will go on to win the match. Back in 2010, I borrowed a page from baseball analysts and introduced the concept of volatility, as well. (Click the link to see a visual representation of both metrics for an entire match.) Volatility, or leverage, measures the importance of each point–the difference in win probability between a player winning it or losing it.

To put it simply, the higher the leverage of a point, the more valuable it is to win. “High leverage point” is just a more technical way of saying “big point.”  To be considered clutch, a player should be winning more high-leverage points than low-leverage points. You don’t have to win a disproportionate number of high-leverage points to be a very good player–Roger Federer’s break point record is proof of that–but high-leverage points are key to being a clutch player.

(I’m not the only person to think about these issues. Stephanie wrote about this topic in December and calculated a full-year clutch metric for the 2015 ATP season.)

To make this more concrete, I calculated win probability and leverage (LEV) for every point in the Wimbledon semifinal between Federer and Milos Raonic. For the first point of the match, LEV = 2.2%. Raonic could boost his match odds to 50.7% by winning it or drop to 48.5% by losing it. The highest leverage in the match was a whopping 32.8%, when Federer (twice) had game point at 1-2 in the fifth set. The lowest leverage of the match was a mere 0.03%, when Raonic served at 40-0, down a break in the third set. The average LEV in the match was 5.7%, a rather high figure befitting such a tight match.

On average, the 166 points that Raonic won were slightly more important, with LEV = 5.85%, than Federer’s 160, at LEV = 5.62%. Without doing a lot more work with match-level leverage figures, I don’t know whether that’s a terribly meaningful difference. What is clear, though, is that certain parts of Federer’s game fell apart when he needed them most.

By Wimbledon’s official count, Federer committed nine unforced errors, not counting his five double faults, which we’ll get to in a minute. (The Match Charting Project log says Fed had 15, but that’s a discussion for another day.) There were 180 points in the match where the return was put in play, with an average LEV = 6.0%. Federer’s unforced errors, by contrast, had an average LEV nearly twice as high, at 11.0%! The typical leverage of Raonic’s unforced errors was a much less noteworthy 6.8%.

Fed’s double fault timing was even worse. Those of us who watched the fourth set don’t need a fancy metric to tell us that, but I’ll do it anyway. His five double faults had an average LEV of 13.7%. Raonic double faulted more than twice as often, but the average LEV of those points, 4.0%, means that his 11 doubles had less of an impact on the outcome of the match than Roger’s five.

Even the famous Federer forehand looks like less of a weapon when we add leverage to the mix. Fed hit 26 forehand winners, in points with average LEV = 5.1%. Raonic’s 23 forehand winners occurred during points with average LEV = 7.0%.

Taking these three stats together, it seems like Federer saved his greatness for the points that didn’t matter as much.

The bigger picture

When we look at a handful of stats from a single match, we’re not improving much on a commentator who vaguely summarizes a performance by saying that a player didn’t win enough of the big points. While it’s nice to attach concrete numbers to these things, the numbers are only worth so much without more context.

In order to gain a more meaningful understanding of this (or any) performance with leverage stats, there are many, many more questions we should be able to answer. Were Federer’s high-leverage performances typical? Does Milos often double fault on less important points? Do higher-leverage points usually result in more returns in play? How much can leverage explain the outcome of very close matches?

These questions (and dozens, if not hundreds more) signal to me that this is a fruitful field for further study. The smaller-scale numbers, like the average leverage of points ending with unforced errors, seem to have particular potential. For instance, it may be that Federer is less likely to go for a big forehand on a high-leverage point.

Despite the dangers of small samples, these metrics allow us to pinpoint what, exactly, players did at more crucial moments. Unlike some of the more simplistic stats that tennis fans are forced to rely on, leverage numbers could help us understand the situational tendencies of every player on tour, leading to a better grasp of each match as it happens.

How Elo Solves the Olympics Ranking Points Conundrum

Last week’s Olympic tennis tournament had superstars, it had drama, and it had tears, but it didn’t have ranking points. Surprise medalists Monica Puig and Juan Martin del Potro scored huge triumphs for themselves and their countries, yet they still languish at 35th and 141st in their respective tour’s rankings.

The official ATP and WTA rankings have always represented a collection of compromises, as they try to accomplish dual goals of rewarding certain behaviors (like showing up for high-profile events) and identifying the best players for entry in upcoming tournaments. Stripping the Olympics of ranking points altogether was an even weirder compromise than usual. Four years ago in London, some points were awarded and almost all the top players on both tours showed up, even though many of them could’ve won more points playing elsewhere.

For most players, the chance at Olympic gold was enough. The level of competition was quite high, so while the ATP and WTA tours treat the tournament in Rio as a mere exhibition, those of us who want to measure player ability and make forecasts must factor Olympics results into our calculations.

Elo, a rating system originally designed for chess that I’ve been using for tennis for the past year, is an excellent tool to use to integrate Rio results with the rest of this season’s wins and losses. Broadly speaking, it awards points to match winners and subtracts points from losers. Beating a top player is worth many more points than beating a lower-rated one. There is no penalty for not playing–for example, Stan Wawrinka‘s and Simona Halep‘s ratings are unchanged from a week ago.

Unlike the ATP and WTA ranking systems, which award points based on the level of tournament and round, Elo is context-neutral. Del Potro’s Elo rating improved quite a bit thanks to his first-round upset of Novak Djokovic–the same amount it would have increased if he had beaten Djokovic in, say, the Toronto final.

Many fans object to this, on the reasonable assumption that context matters. It certainly seems like the Wimbledon final should count for more than, say, a Monte Carlo quarterfinal, even if the same player defeats the same opponent in both matches.

However, results matter for ranking systems, too. A good rating system will do two things: predict winners correctly more often than other systems, and give more accurate degrees of confidence for those predictions. (For example, in a sample of 100 matches in which the system gives one player a 70% chance of winning, the favorite should win 70 times.) Elo, with its ignorance of context, predicts more winners and gives more accurate forecast certainties than any other system I’m aware of.

For one thing, it wipes the floor with the official rankings. While it’s possible that tweaking Elo with context-aware details would better the results even more, the improvement would likely be minor compared to the massive difference between Elo’s accuracy and that of the ATP and WTA algorithms.

Relying on a context-neutral system is perfect for tennis. Instead of altering the ranking system with every change in tournament format, we can always rate players the same way, using only their wins, losses, and opponents. In the case of the Olympics, it doesn’t matter which players participate, or what anyone thinks about the overall level of play. If you defeat a trio of top players, as Puig did, your rating skyrockets. Simple as that.

Two weeks ago, Puig was ranked 49th among WTA players by Elo–several places lower than her WTA ranking of 37. After beating Garbine Muguruza, Petra Kvitova, and Angelique Kerber, her Elo ranking jumped to 22nd. While it’s tough, intuitively, to know just how much weight to assign to such an outlier of a result, her Elo rating just outside the top 20 seems much more plausible than Puig’s effectively unchanged WTA ranking in the mid-30s.

Del Potro is another interesting test case, as his injury-riddled career presents difficulties for any rating system. According to the ATP algorithm, he is still outside the top 100 in the world–a common predicament for once-elite players who don’t immediately return to winning ways.

Elo has the opposite problem with players who miss a lot of time due to injury. When a player doesn’t compete, Elo assumes his level doesn’t change. That’s clearly wrong, and it has cast a lot of doubt over del Potro’s place in the Elo rankings this season. The more matches he plays, the more his rating will reflect his current ability, but his #10 position in the pre-Olympics Elo rankings seemed overly influenced by his former greatness.

(A more sophisticated Elo-based system, Glicko, was created in part to improve ratings for competitors with few recent results. I’ve tinkered with Glicko quite a bit in hopes of more accurately measuring the current levels of players like Delpo, but so far, the system as a whole hasn’t come close to matching Elo’s accuracy while also addressing the problem of long layoffs. For what it’s worth, Glicko ranked del Potro around #16 before the Olympics.)

Del Potro’s success in Rio boosted him three places in the Elo rankings, up to #7. While that still owes something to the lingering influence of his pre-injury results, it’s the first time his post-injury Elo rating comes close to passing the smell test.

You can see the full current lists elsewhere on the site: here are ATP Elo ratings and WTA Elo ratings.

Any rating system is only as good as the assumptions and data that go into it. The official ATP and WTA ranking systems have long suffered from improvised assumptions and conflicting goals. When an important event like the Olympics is excluded altogether, the data is incomplete as well. Now as much as ever, Elo shines as an alternative method. In addition to a more predictive algorithm, Elo can give Rio results the weight they deserve.