A Preface to All GOAT Arguments

Earlier this week, The Economist published my piece about Rafael Nadal’s and Roger Federer’s grand slam counts. I made the case that, because Nadal’s paths to major titles had been more difficult (the 2017 US Open notwithstanding), his 16 slams are worth more–barely!–than Federer’s.

Inevitably, some readers reduced my conclusion to something like, “stats prove that Nadal is the greatest ever.” Whoa there, kiddos. It may be true that Nadal is better than Federer, and we could probably make a solid argument based on the stats. But a rating of 18.8 to 18.7, based on 35 tournaments, can’t quite carry that burden.

There are two major steps in settling any “greatest ever” debate (tennis or otherwise). The first is definitional. What do we mean by “greatest?” How much more important are slams than non-slams? What about longevity? Rankings? Accomplishments across different surfaces? How much weight do we give a player’s peak? How much does the level of competition matter? What about head-to-head records? I could go on and on. Only when we decide what “greatest” means can we even attempt to make an argument for one player over another.

The second step–answering the questions posed by the first–is more work-intensive, but much less open to debate. If we decide that the greatest male tennis player of all time is the one who achieved the highest Elo rating at his peak, we can do the math. (It’s Novak Djokovic.) If you pick out ten questions that are plausible proxies for “who’s the greatest?” you won’t always get the same answer. Longevity-focused variations tend to give you Federer. (Or Jimmy Connors.) Questions based solely on peak-level accomplishments will net Djokovic (or maybe Bjorn Borg). Much of the territory in between is owned by Nadal, unless you consider the amateur era, in which case Rod Laver takes a bite out of Rafa’s share.

Of course, many fans skip straight to the third step–basking in the reflected glory of their hero–and work backwards. With a firm belief that their favorite player is the GOAT, they decide that the most relevant questions are the ones that crown their man. This approach fuels plenty of online debates, but it’s not quite at my desired level of rigor.

When the big three have all retired, someone could probably write an entire book laying out all the ways we might determine “greatest” and working out who, by the various definitions, comes out on top. Most of what we’re doing now is simply contributing sections of chapters to that eventual project. Now or then, one blog post will never be enough to settle a debate of this magnitude.

In the meantime, we can aim to shed more light on the comparisons we’re already making. Grand slam titles aren’t everything, but they are important, and “19 is more than 16” is a key weapon in the arsenal of Federer partisans. Establishing that this particular 19 isn’t really any better than that particular 16 doesn’t end the debate any more than “19 is more than 16” ever did. But I hope that it made us a little more knowledgeable about the sport and the feats of its greatest competitors.

At the one-article, 1,000-word scale, we can achieve a lot of interesting things. But for an issue this wide-ranging, we can’t hope to settle it in one fell swoop. The answers are hard to find, and choosing the right question is even more difficult.

 

Fun With Service Point Ratios

In Rafael Nadal‘s comprehensive victory over Kevin Anderson in the 2017 US Open final, Nadal didn’t face a single break point. Anderson didn’t even earn very many deuces. Nadal, on the other hand, constantly challenged in his opponent’s service games.

This produced an unusual ratio: Anderson had to play way more service points than Nadal did, even though they served the same number of games. Rafa toed the line only 72 times to the South African’s 108, for a ratio of 2/3 or, rounded, 0.67. In this week’s podcast, I speculated that this service point ratio is a handy way of spotting winners–if one man is getting through his service games much quicker than the other, it’s probably because he is holding easily and his opponent is not.

It wasn’t the best hypothesis I’ve ever put forward. It’s true, but not by an overwhelming margin. In the average ATP match, the ratio of the winner’s service points played to the loser’s service points played is 0.96 — equivalent to Rafa serving 88 times to Anderson’s 92. The winnner plays fewer service points in 57% of contests. We’ve hardly discovered the next IBM Key to the Match here.

Instead of discovering a useful proxy for success in the most basic of match stats, we’ve come upon yet another item to add to the list of Nadal’s extreme accomplishments. Of nearly 13,000 completed grand slam singles matches since 1991, only 147 of the winners–barely one percent–had service point ratios below 0.67. Out of 106 major finals with stats available, Rafa’s ratio on Sunday was the lowest on record. He just edged out Roger Federer‘s 0.68 ratio from the 2007 Australian Open final against Fernando Gonzalez.

It turns out that the service point ratio is as fluky for Rafa as it is for men as a whole. Of his 16 victories in grand slam finals, he has posted a ratio below 1.0 in eight of them, equal to 1.0 once, and above 1.0 seven times. His average is an uninteresting 0.98.

There you have it: Over the course of a single week, we’ve seen an oddity, devised a stat to capture it, and determined that it doesn’t tell us much. Analytics, anyone?

For a more serious look at Rafa’s career accomplishments after bringing home his 16th major title, check out my analysis posted yesterday at The Economist’s Game theory blog.

Denis Shapovalov and Fast ATP Starts

18-year-old Canadian lefty Denis Shapovalov has had one heck of a summer. In Montreal, he defeated Juan Martin del Potro and Rafael Nadal in back-to-back matches, and at the US Open, he qualified for the main draw, upset Jo Wilfried Tsonga, and reached the fourth round in only his second appearance at a major.

Thanks to those wins and the big stages on which he achieved them, he has cracked the ATP top 60, despite playing fewer than 20 tour-level matches. The Elo rating system, which awards points based on opponent quality, is even more optimistic. By that measure, with his win over Tsonga, Shapovalov improved to 1950–good for 34th on tour–before losing about 25 Elo points in his loss to Pablo Carreno Busta.

While an Elo score of 1950 is an arbitrary number–there’s nothing magical about any particular Elo threshold; it’s just a mechanism to compare players to each other–it gives us a way to compare Shapovalov’s hot start with other players who made quick impacts at tour level. Since the early 1980s, only 13 players have reached a 1950 Elo score in fewer matches than the Canadian needed. As usual with early-career accomplishments, there are a few unexpected names in the mix, but overall, it’s very promising company for an 18-year-old:

Player               Matches   Age  
Lleyton Hewitt             7  16.9  
Jarkko Nieminen            7  20.2  
Juan Carlos Ferrero       10  19.4  
David Ferrer              12  20.4  
Kenneth Carlsen           12  19.4  
Tommy Haas                13  19.1  
Peter Lundgren            13  20.7  
John Van Lottum           14  21.8  
Sergi Bruguera            14  18.4  
Julian Alonso             15  20.0

Player               Matches   Age   
Xavier Malisse            16  18.6  
Jan Siemerink             16  20.9  
Ivo Minar                 16  21.2  
Florian Mayer             17  20.7  
Cristiano Caratti         17  20.7  
Nick Kyrgios              17  19.3  
Denis Shapovalov          17  18.4  
Martin Strelba            17  22.1  
Jay Berger                17  20.2  
Andy Roddick              18  18.6

I identified just over 350 players who, at some point in their careers, peaked with an Elo score of at least 1950. On average, these players needed 75 matches to reach that level (the median is 59), and two active tour-regulars, Gilles Muller and Albert Ramos, needed almost 300 matches to achieve the threshold.

Shapovalov’s record so far is equally impressive when we consider it in terms of age. Again, he’s among the top 20 players in modern tennis history: Only 11 players got to 1950 before their 18th birthday. The Canadian is only a few months beyond his. And many of the other ATPers who reached that score at an early age needed much more tour experience. I’ve included the top 30 on this list to show how Shapovalov compares to so many of the game’s greats:

Player                  Matches   Age  
Aaron Krickstein             25  16.4  
Michael Chang                32  16.5  
Lleyton Hewitt                7  16.9  
Boris Becker                 27  17.5  
Mats Wilander                27  17.5  
Guillermo Perez Roldan       26  17.6  
Andre Agassi                 46  17.6  
Pat Cash                     66  17.6  
Goran Ivanisevic             35  17.7  
Andrei Medvedev              22  17.8  

Player                  Matches   Age
Rafael Nadal                 44  17.9  
Sammy Giammalva              21  18.0  
Horst Skoff                  19  18.1  
Jimmy Arias                  61  18.2  
Kent Carlsson                56  18.3  
Sergi Bruguera               14  18.4  
Denis Shapovalov             17  18.4  
Andy Murray                  22  18.4  
Juan Martin del Potro        31  18.4  
Fabrice Santoro              59  18.5  

Player                  Matches   Age
John McEnroe                 28  18.5  
Roger Federer                40  18.5  
Stefan Edberg                40  18.5  
Andy Roddick                 18  18.6  
Pete Sampras                 56  18.6  
Thomas Enqvist               28  18.6  
Xavier Malisse               16  18.6  
Novak Djokovic               33  18.8  
Jim Courier                  51  18.8  
Yannick Noah                 41  18.8

There are no guarantees when it comes to tennis prospects, but this is very good company. On average, the 23 other players to reach the 1950 Elo threshold at age 18 improved their Elo ratings to 2100 before age 20, and rose to 2250 at some point in their careers. The first number would be good for 12th on today’s list, and the second would merit 5th place, just behind the Big Four. Nadal and del Potro were the first of Shapovalov’s high-profile victims, and judging from this sharp career trajectory, they won’t be the last.

Podcast Episode 17: US Open in Review

Episode 17 of the Tennis Abstract Podcast, with Carl Bialik, is our US Open recap. We start with a discussion of Sloane Stephens–her performance here as well as what we expect from her, and we delve into possible explanations of her impressive performance in particular against aggressive players.

We then talk Nadal and his no-nonsense strategy to defeat Kevin Anderson, and consider best-case scenarios for the rest of Kev’s career. We finish up with some doubles and a bit on this weekend’s Davis Cup ties. As always, thanks for listening!

Click to listen, subscribe on iTunes, or use our feed to get updates on your favorite podcast software.

Podcast Episode 16: The Second Half of our Second Week Chat

Episode 16 of the Tennis Abstract Podcast, with Carl Bialik, didn’t quite work out as planned — my microphone malfunctioned for much of the first half of the recording — but the second half of our conversation could be salvaged. Thus, this episode is missing the big news of the second week, the all-American women’s semifinals, but we still touched on a variety of burning US Open topics, like the youngsters making news in New York and the inevitable hypotheticals of the players who weren’t able to participate in Flushing this year.

This is a shorter-than usual episode, clocking in at 34 minutes; we hope to return on Friday with another mid-Slam update. Thanks for listening!

Click to listen, subscribe on iTunes, or use our feed to get updates on your favorite podcast software.

Quantifying Cakewalks, or The Time Rafa Finally Got Lucky

During this year’s US Open, much has been made of some rather patchy sections of the draw. Many great players are sitting out the tournament with injury, and plenty of others crashed out early. Pablo Carreno Busta reached the quarterfinals by defeating four straight qualifiers, and Rafael Nadal could conceivably win the title without beating a single top-20 player.

None of this is a reflection on the players themselves: They can play only the draw they’re dealt, and we’ll never know how they would’ve handled a more challenging array of opponents. The weakness of the draw, however, could affect how we remember this tournament.  If we are going to let the quality of the field color our memories, we should at least try to put this year’s players in context to see how they compare with majors in the past.

How to measure draw paths

There are lots of ways to quantify draw quality. (There’s an entire category on this blog devoted to it.) Since we’re interested in the specific sets of opponents faced by our remaining contenders, we need a metric that focuses on those. It doesn’t really matter that, say, Nick Kyrgios was in the draw, since none of the semifinalists had to play him.

Instead of draw difficulty, what we’re after is what I’ll call path ease. It’s a straightforward enough concept: How hard is it to beat the specific set of guys that Rafa (for instance) had to play?

To get a number, we’ll need a few things: The surface-weighted Elo ratings of each one of a player’s opponents, along with a sort of “reference Elo” for an average major semifinalist. (Or finalist, or title winner.) To determine the ease of Nadal’s path so far, we don’t want to use Nadal’s Elo. If we did that, the exact same path would look easier or harder depending on the quality of the player who faced it.

(The exact value of the “reference Elo” isn’t that important, but for those of you interested in the numbers: I found the average Elo rating of every slam semifinalist, finalist, and winner back to 1988 on each of the three major surfaces. On hard courts, those numbers are 2145, 2198, and 2233, respectively. When measuring the difficulty of a path to the semifinal round, I used the first of those numbers; for the difficulty of a path to the title, I used the last.)

To measure path ease, then, we answer the question: What are the odds that an average slam semifinalist (for instance) would beat this particular set of players? In Rafa’s case, he has yet to face a player with a weighted-hard-court Elo rating above 1900, and the typical 2145-rated semifinalist would beat those five players 71.5% of the time. That’s a bit easier than Kevin Anderson‘s path the semis, but a bit harder than Carreno Busta’s. Juan Martin del Potro, on the other hand, is in a different world altogether. Here are the path ease numbers for all four semifinalists, showing the likelihood that average contenders in each round would advance, giving the difficulty of the draws each player has faced:

Semifinalist   Semi Path  Final Path  Title Path  
Nadal              71.5%       49.7%       51.4%  
del Potro           9.1%        7.5%       10.0%  
Anderson           69.1%       68.9%       47.1%  
Carreno Busta      74.3%       71.2%       48.4%

(We don’t yet know each player’s path to the title, so I averaged the Elos of possible opponents. Anderson and Carreno Busta are very close, so for Rafa and Delpo, their potential final opponent doesn’t make much difference.)

There’s one quirk with this metric that you might have noticed: For Nadal and del Potro, their difficulty of reaching the final is greater than that of winning the title altogether! Obviously that doesn’t make logical sense–the numbers work out that way because of the “reference Elos” I’m using. The average slam winner is better than the average slam finalist, so the table is really saying that it’s easier for the average slam winner to beat Rafa’s seven opponents than it would be for the average slam finalist to get past his first six opponents. This metric works best when comparing title paths to title paths, or semifinal paths to semifinal paths, which is what we’ll do for the rest of this post.

Caveats and quirks aside, it’s striking just how easy three of the semifinal paths have been compared to del Potro’s much more arduous route. Even if we discount the difficulty of beating Roger Federer–Elo thinks he’s the best active player on hard courts but doesn’t know about his health issues–Delpo’s path is wildly different from those of his semifinal and possible final opponents.

Cakewalks in context

Semifinalist path eases of 69% or higher–that is, easier–are extremely rare. In fact, the paths of Anderson, Carreno Busta, and Nadal are all among the ten easiest in the last thirty years! Here are the previous top ten:

Year  Slam             Semifinalist               Path Ease  
1989  Australian Open  Thomas Muster                  84.1%  
1989  Australian Open  Miloslav Mecir                 74.2%  
1990  Australian Open  Ivan Lendl                     73.8%  
2006  Roland Garros    Ivan Ljubicic                  73.7%  
1988  Australian Open  Ivan Lendl                     72.2%  
1988  Australian Open  Pat Cash                       70.1%  
2004  Australian Open  Juan Carlos Ferrero            69.2%  
1996  US Open          Michael Chang                  68.8%  
1990  Roland Garros    Andres Gomez                   68.4%  
1996  Australian Open  Michael Chang                  66.2%

In the last decade, the easiest path to the semifinal was Stan Wawrinka‘s route to the 2016 French Open final four, which rated 59.8%. As we’ll see further on, Wawrinka’s draw got a lot more difficult after that.

Del Potro’s draw so far isn’t quite as extreme, but it is quite difficult in the historical context. Of the nearly 500 major semifinalists since 1988, all but 15 are easier than his 9.1% path difficulty. Here are the top ten, all of whom faced draws that would have given the average slam semifinalist less than an 8% chance of getting that far:

Year  Slam             Semifinalist              Path Ease  
2009  Roland Garros    Robin Soderling                1.6%  
1988  Roland Garros    Jonas Svensson                 1.9%  
2017  Wimbledon        Tomas Berdych                  3.7%  
1996  Wimbledon        Richard Krajicek               6.4%  
2011  Wimbledon        Jo Wilfried Tsonga             6.6%  
2012  US Open          Tomas Berdych                  6.8%  
2017  Roland Garros    Dominic Thiem                  6.9%  
2014  Australian Open  Stan Wawrinka                  7.0%  
1989  Roland Garros    Michael Chang                  7.1%  
2017  Wimbledon        Sam Querrey                    7.5%

Previewing the history books

In the long term, we’ll care a lot more about how the 2017 US Open champion won the title than how he made it through the first five rounds. As we saw above, three of the four semifinalists have a path ease of around 50% to win the title–again, meaning that a typical slam winner would have a roughly 50/50 chance of getting past this particular set of seven opponents.

No major winner in recent memory has had it so easy. Nadal’s path would rate first in the last thirty years, while Carreno Busta’s or Anderson’s would rate in the top five. (If it comes to that, their exact numbers will depend on who they face in the final.) Here is the list that those three men have the chance to disrupt:

Year  Slam             Winner                  Path Ease  
2002  Australian Open  Thomas Johansson            48.1%  
2001  Australian Open  Andre Agassi                47.6%  
1999  Roland Garros    Andre Agassi                45.6%  
2000  Wimbledon        Pete Sampras                45.3%  
2006  Australian Open  Roger Federer               44.5%  
1997  Australian Open  Pete Sampras                44.4%  
2003  Australian Open  Andre Agassi                43.9%  
1999  US Open          Andre Agassi                41.5%  
2002  Wimbledon        Lleyton Hewitt              39.9%  
1998  Wimbledon        Pete Sampras                39.1%

At the 2006 Australian Open, Federer lucked into a path that was nearly as easy as Rafa’s this year. His 2003 Wimbledon title just missed the top ten as well. By comparison, Novak Djokovic has never won a major with a path ease greater than 18.7%–harder than that faced by more than half of major winners.

Nadal has hardly had it easy as he has racked up his 15 grand slams, either. Here are the top ten most difficult title paths:

Year  Slam             Winner                Path Ease  
2014  Australian Open  Stan Wawrinka              2.2%  
2015  Roland Garros    Stan Wawrinka              3.1%  
2016  Us Open          Stan Wawrinka              3.2%  
2013  Roland Garros    Rafael Nadal               4.4%  
2014  Roland Garros    Rafael Nadal               4.7%  
1989  Roland Garros    Michael Chang              5.0%  
2012  Roland Garros    Rafael Nadal               5.2%  
2016  Australian Open  Novak Djokovic             5.4%  
2009  US Open          J.M. Del Potro             5.9%  
1990  Wimbledon        Stefan Edberg              6.2%

As I hinted in the title of this post, while Nadal got lucky in New York this year, it hasn’t always been that way. He appears three times on this list, facing greater challenges than any major winner other than Wawrinka the giant-killer.

On average, Rafa’s grand slam title paths haven’t been quite as harrowing as Djokovic’s, but compared to most other greats of the last few decades, he has worked hard for his titles. Here are the average path eases of players with at least three majors since 1988:

Player           Majors        Avg Path Ease  
Stan Wawrinka         3                 2.8%  
Novak Djokovic       12                11.3%  
Rafael Nadal         15                13.6%  
Stefan Edberg         4                14.6%  
Andy Murray           3                18.8%  
Boris Becker          4                18.8%  
Mats Wilander         3                19.8%  
Gustavo Kuerten       3                22.0%  
Roger Federer        19                23.5%  
Jim Courier           4                26.4%  
Pete Sampras         14                28.9%  
Andre Agassi          8                32.3%

If Rafa adds to his grand slam haul this weekend, his average path ease will take a bit of a hit. Still, he’ll only move one place down the list, behind Stefan Edberg. After more than a decade of battling all-time greats in the late rounds of majors, it’s fair to say that Nadal deserved this cakewalk.


Update: This post reads a bit differently than when I first wrote it: I’ve changed the references to “path difficulty” to “path ease” to make it clearer what the metric is showing.

Nadal and Anderson advanced to the final, so we can now determine the exact path ease number for whichever one of them wins the title. Rafa’s exact number remains 51.4%, and should he win, his career average across 16 slams will increase to about 15%. Anderson’s path ease to the title is “only” 41.3%, which would be good for ninth on the list shown above, and just barely second easiest of the last 30 US Opens.

Measuring the Impact of the Serve in Men’s Tennis

By just about any measure, the serve is the most important shot in tennis. In men’s professional tennis, with its powerful deliveries and short points, the serve is all the more crucial. It is the one shot guaranteed to occur in every rally, and in many points, it is the only shot.

Yet we don’t have a good way of measuring exactly how important it is. It’s easy to determine which players have the best serves–they tend to show up at the top of the leaderboards for aces and service points won–but the available statistics are very limited if we want a more precise picture. The ace stat counts only a subset of those points decided by the serve, and the tally of service points won (or 1st serve points won, or 2nd serve points won) combines the effect of the serve with all of the other shots in a player’s arsenal.

Aces are not the only points in which the serve is decisive, and some service points won are decided long after the serve ceases to have any relevance to the point. What we need is a method to estimate how much impact the serve has on points of various lengths.

It seems like a fair assumption that if a server hits a winner on his second shot, the serve itself deserves some of the credit, even if the returner got it back in play. In any particular instance, the serve might be really important–imagine Roger Federer swatting away a weak return from the service line–or downright counterproductive–think of Rafael Nadal lunging to defend against a good return and hitting a miraculous down-the-line winner. With the wide variety of paths a tennis point can follow, though, all we can do is generalize. And in the aggregate, the serve probably has a lot to do with a 3-shot rally. At the other extreme, a 25-shot rally may start with a great serve or a mediocre one, but by the time by the point is decided, the effect of the serve has been canceled out.

With data from the Match Charting Project, we can quantify the effect. Using about 1,200 tour-level men’s matches from 2000 to the present, I looked at each of the server’s shots grouped by the stage of the rally–that is, his second shot, his third shot, and so on–and calculated how frequently it ended the point. A player’s underlying skills shouldn’t change during a point–his forehand is as good at the end as it is at the beginning, unless fatigue strikes–so if the serve had no effect on the success of subsequent shots, players would end the point equally often with every shot.

Of course, the serve does have an effect, so points won by the server end much more frequently on the few shots just after the serve than they do later on. This graph illustrates how the “point ending rate” changes:

On first serve points (the blue line), if the server has a “makeable” second shot (the third shot of the rally, “3” on the horizontal axis, where “makeable” is defined as a shot that results in an unforced error or is put back in play), there is a 28.1% chance it ends the point in the server’s favor, either with a winner or by inducing an error on the next shot. On the following shot, the rate falls to 25.6%, then 21.8%, and then down into what we’ll call the “base rate” range between 18% and 20%.

The base rate tells us how often players are able to end points in their favor after the serve ceases to provide an advantage. Since the point ending rate stabilizes beginning with the fifth shot (after first serves), we can pinpoint that stage of the rally as the moment–for the average player, anyway–when the serve is no longer an advantage.

As the graph shows, second serve points (shown with a red line) are a very different story. It appears that the serve has no impact once the returner gets the ball back in play. Even that slight blip with the server’s third shot (“5” on the horizontal axis, for the rally’s fifth shot) is no higher than the point ending rate on the 15th shot of first-serve rallies. This tallies with the conclusions of some other research I did six years ago, and it has the added benefit of agreeing with common sense, since ATP servers win only about half of their second serve points.

Of course, some players get plenty of positive after-effects from their second serves: When John Isner hits a second shot on a second-serve point, he finishes the point in his favor 30% of the time, a number that falls to 22% by his fourth shot. His second serve has effects that mirror those of an average player’s first serve.

Removing unforced errors

I wanted to build this metric without resorting to the vagaries of differentiating forced and unforced errors, but it wasn’t to be. The “point-ending” rates shown above include points that ended when the server’s opponent made an unforced error. We can argue about whether, or how much, such errors should be credited to the server, but for our purposes today, the important thing is that unforced errors aren’t affected that much by the stage of the rally.

If we want to isolate the effect of the serve, then, we should remove unforced errors. When we do so, we discover an even sharper effect. The rate at which the server hits winners (or induces forced errors) depends heavily on the stage of the rally. Here’s the same graph as above, only with opponent unforced errors removed:

The two graphs look very similar. Again, the first serve loses its effect around the 9th shot in the rally, and the second serve confers no advantage on later shots in the point. The important difference to notice is the ratio between the peak winner rate and the base rate, which is now just above 10%. When we counted unforced errors, the ratio between peak and base rate was about 3:2. With unforced errors removed, the ratio is close to 2:1, suggesting that when the server hits a winner on his second shot, the serve and the winner contributed roughly equally to the outcome of the point. It seems more appropriate to skip opponent unforced errors when measuring the effect of the serve, and the resulting 2:1 ratio jibes better with my intuition.

Making a metric

Now for the fun part. To narrow our focus, let’s zero in on one particular question: What percentage of service points won can be attributed to the serve? To answer that question, I want to consider only the server’s own efforts. For unreturned serves and unforced errors, we might be tempted to give negative credit to the other player. But for today’s purposes, I want to divvy up the credit among the server’s assets–his serve and his other shots–like separating the contributions of a baseball team’s pitching from its defense.

For unreturned serves, that’s easy. 100% of the credit belongs to the serve.

For second serve points in which the return was put in play, 0% of the credit goes to the serve. As we’ve seen, for the average player, once the return comes back, the server no longer has an advantage.

For first-serve points in which the return was put in play and the server won by his fourth shot, the serve gets some credit, but not all, and the amount of credit depends on how quickly the point ended. The following table shows the exact rates at which players hit winners on each shot, in the “Winner %” column:

Server's…  Winner %  W%/Base  Shot credit  Serve credit  
2nd shot      21.2%     1.96        51.0%         49.0%  
3rd shot      18.1%     1.68        59.6%         40.4%  
4th shot      13.3%     1.23        81.0%         19.0%  
5th+          10.8%     1.00       100.0%          0.0%

Compared to a base rate of 10.8% winners per shot opportunity, we can calculate the approximate value of the serve in points that end on the server’s 2nd, 3rd, and 4th shots. The resulting numbers come out close to round figures, so because these are hardly laws of nature (and the sample of charted matches has its biases), we’ll go with round numbers. We’ll give the serve 50% of the credit when the server needed only two shots, 40% when he needed three shots, and 20% when he needed four shots. After that, the advantage conferred by the serve is usually canceled out, so in longer rallies, the serve gets 0% of the credit.

Tour averages

Finally, we can begin the answer the question, What percentage of service points won can be attributed to the serve? This, I believe, is a good proxy for the slipperier query I started with, How important is the serve?

To do that, we take the same subset of 1,200 or so charted matches, tally the number of unreturned serves and first-serve points that ended with various numbers of shots, and assign credit to the serve based on the multipliers above. Adding up all the credit due to the serve gives us a raw number of “points” that the player won thanks to his serve. When we divide that number by the actual number of service points won, we find out how much of his service success was due to the serve itself. Let’s call the resulting number Serve Impact, or SvI.

Here are the aggregates for the entire tour, as well as for each major surface:

         1st SvI  2nd SvI  Total SvI  
Overall    63.4%    31.0%      53.6%  
Hard       64.6%    31.5%      54.4%  
Clay       56.9%    27.0%      47.8%  
Grass      70.8%    37.3%      61.5%

Bottom line, it appears that just over half of service points won are attributable to the serve itself. As expected, that number is lower on clay and higher on grass.

Since about two-thirds of the points that men win come on their own serves, we can go even one step further: roughly one-third of the points won by a men’s tennis player are due to his serve.

Player by player

These are averages, and the most interesting players rarely hew to the mean. Using the 50/40/20 multipliers, Isner’s SvI is a whopping 70.8% and Diego Schwartzman‘s is a mere 37.7%. As far from the middle as those are, they understate the uniqueness of these players. I hinted above that the same multipliers are not appropriate for everyone; the average player reaps no positive after-effects of his second serve, but Isner certainly does. The standard formula we’ve used so far credits Isner with an outrageous SvI, even without giving him credit for the “second serve plus one” points he racks up.

In other words, to get player-specific results, we need player-specific multipliers. To do that, we start by finding a player-specific base rate, for which we’ll use the winner (and induced forced error) rate for all shots starting with the server’s fifth shot on first-serve points and shots starting with the server’s fourth on second-serve points. Then we check the winner rate on the server’s 2nd, 3rd, and 4th shots on first-serve points and his 2nd and 3rd shots on second-serve points, and if the rate is at least 20% higher than the base rate, we give the player’s serve the corresponding amount of credit.

Here are the resulting multipliers for a quartet of players you might find interesting, with plenty of surprises already:

                   1st serve              2nd serve       
                    2nd shot  3rd  4th     2nd shot  3rd  
Roger Federer            55%  50%  30%           0%   0%  
Rafael Nadal             31%   0%   0%           0%   0%  
John Isner               46%  41%   0%          34%   0%  
Diego Schwartzman        20%  35%   0%           0%  25%  
Average                  50%  30%  20%           0%   0%

Roger Federer gets more positive after-effects from his first serve than average, more even than Isner does. The big American is a tricky case, both because so few of his serves come back and because he is so aggressive at all times, meaning that his base winner rate is very high. At the other extreme, Schwartzman and Rafael Nadal get very little follow-on benefit from their serves. Schwartzman’s multipliers are particularly intriguing, since on both first and second serves, his winner rate on his third shot is higher than on his second shot. Serve plus two, anyone?

Using player-specific multipliers makes Isner’s and Schwartzman’s SvI numbers more extreme. Isner’s ticks up a bit to 72.4% (just behind Ivo Karlovic), while Schwartzman’s drops to 35.0%, the lowest of anyone I’ve looked at. I’ve calculated multipliers and SvI for all 33 players with at least 1,000 tour-level service points in the Match Charting Project database:

Player                 1st SvI  2nd SvI  Total SvI  
Ivo Karlovic             79.2%    56.1%      73.3%  
John Isner               78.3%    54.3%      72.4%  
Andy Roddick             77.8%    51.0%      71.1%  
Feliciano Lopez          83.3%    37.1%      68.9%  
Kevin Anderson           77.7%    42.5%      68.4%  
Milos Raonic             77.4%    36.0%      66.0%  
Marin Cilic              77.1%    34.1%      63.3%  
Nick Kyrgios             70.6%    41.0%      62.5%  
Alexandr Dolgopolov      74.0%    37.8%      61.3%  
Gael Monfils             69.8%    37.7%      60.8%  
Roger Federer            70.6%    32.0%      58.8%  
                                                    
Player                 1st SvI  2nd SvI  Total SvI  
Bernard Tomic            67.6%    28.7%      58.5%  
Tomas Berdych            71.6%    27.0%      57.2%  
Alexander Zverev         65.4%    30.2%      54.9%  
Fernando Verdasco        61.6%    32.9%      54.3%  
Stan Wawrinka            65.4%    33.7%      54.2%  
Lleyton Hewitt           66.7%    32.1%      53.4%  
Juan Martin Del Potro    63.1%    28.2%      53.4%  
Grigor Dimitrov          62.9%    28.6%      53.3%  
Jo Wilfried Tsonga       65.3%    25.9%      52.7%  
Marat Safin              68.4%    22.7%      52.3%  
Andy Murray              63.4%    27.5%      52.0%  
                                                    
Player                 1st SvI  2nd SvI  Total SvI  
Dominic Thiem            60.6%    28.9%      50.8%  
Roberto Bautista Agut    55.9%    32.5%      49.5%  
Pablo Cuevas             57.9%    28.9%      47.8%  
Richard Gasquet          56.0%    29.0%      47.5%  
Novak Djokovic           56.0%    26.8%      47.3%  
Andre Agassi             54.3%    31.4%      47.1%  
Gilles Simon             55.7%    28.4%      46.7%  
Kei Nishikori            52.2%    30.8%      45.2%  
David Ferrer             46.9%    28.2%      41.0%  
Rafael Nadal             42.8%    27.1%      38.8%  
Diego Schwartzman        39.5%    25.8%      35.0%

At the risk of belaboring the point, this table shows just how massive the difference is between the biggest servers and their opposites. Karlovic’s serve accounts for nearly three-quarters of his success on service points, while Schwartzman’s can be credited with barely one-third. Even those numbers don’t tell the whole story: Because Ivo’s game relies so much more on service games than Diego’s does, it means that 54% of Karlovic’s total points won–serve and return–are due to his serve, while only 20% of Schwartzman’s are.

We didn’t need a lengthy analysis to show us that the serve is important in men’s tennis, or that it represents a much bigger chunk of some players’ success than others. But now, instead of asserting a vague truism–the serve is a big deal–we can begin to understand just how much it influences results, and how much weak-serving players need to compensate just to stay even with their more powerful peers.